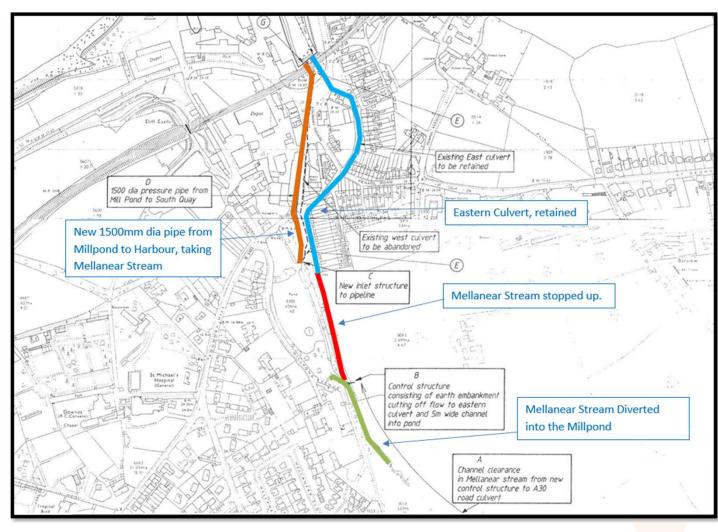
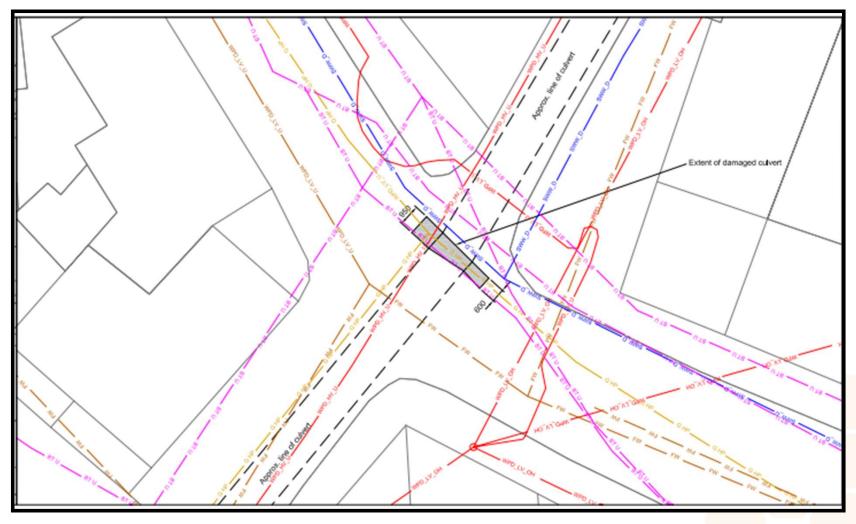
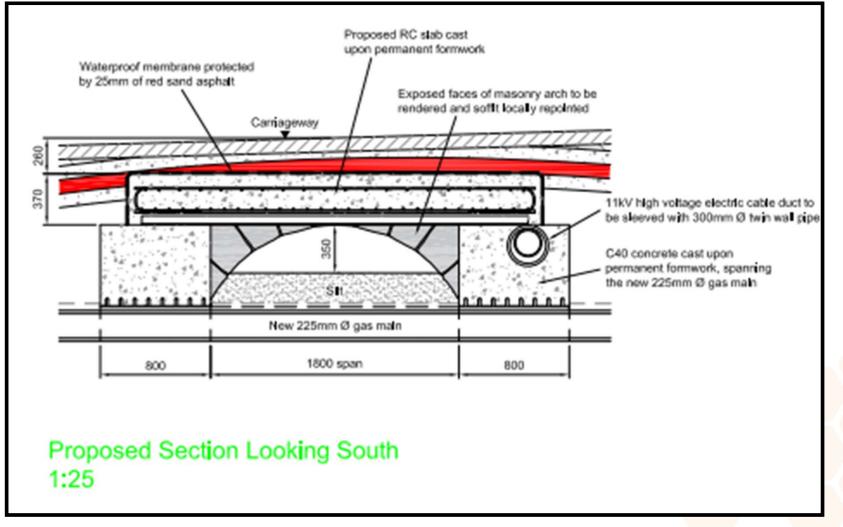
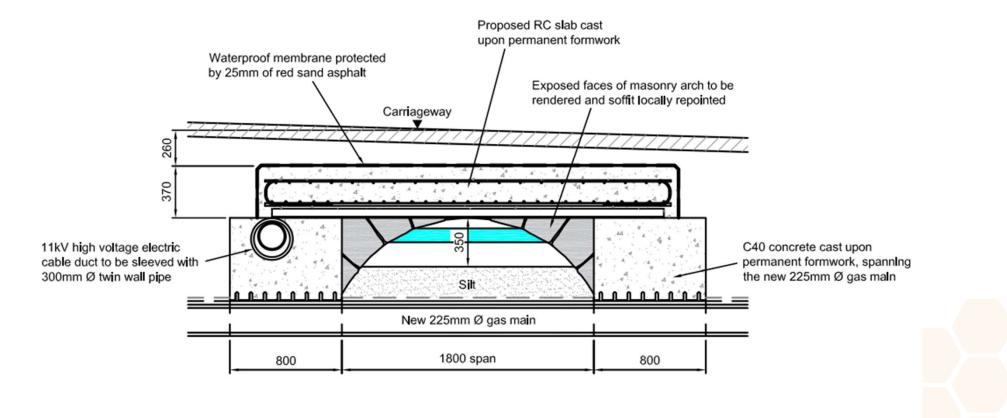


East Culvert Penpol Road, Hayle

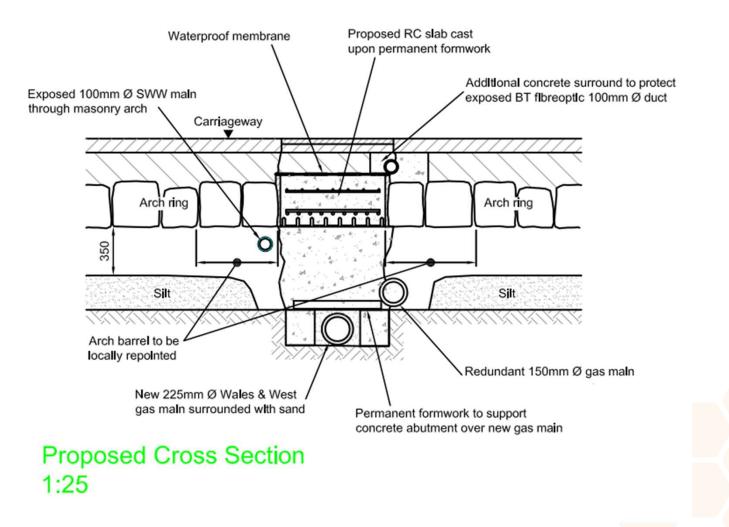

Andy Hoskin Highway Manager


Historic layout pre 1990


Current layout post 1990


Utility Apparatus in the area

Repaired Section South



Repaired Section North

Proposed Section Looking North 1:25

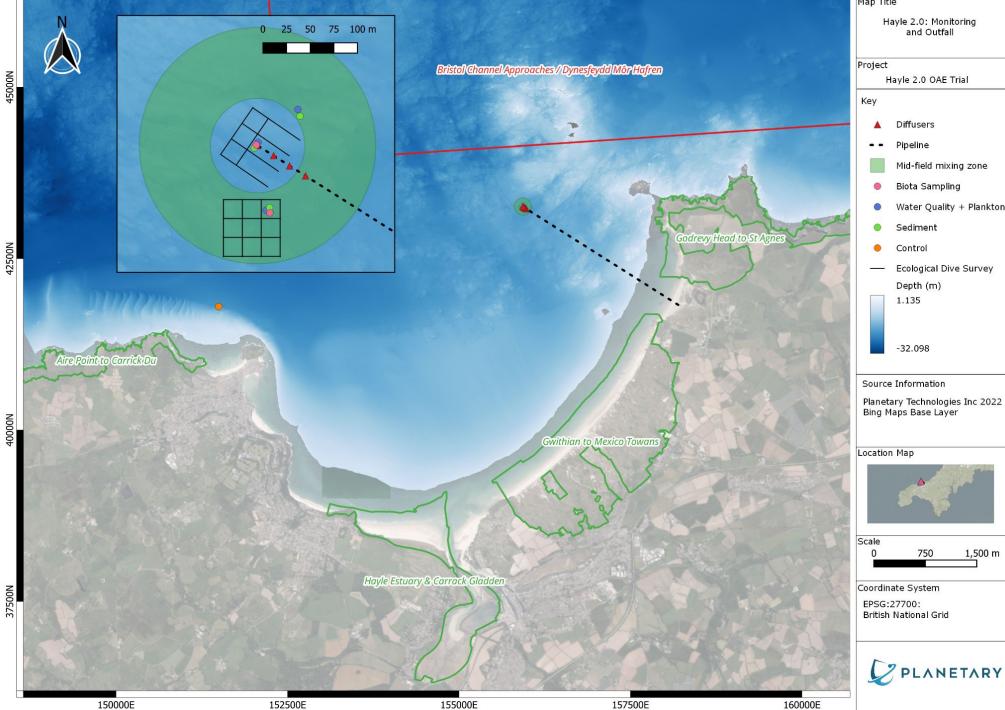
Repaired Cross Section

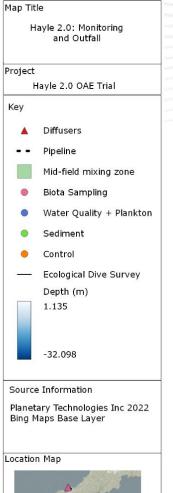
Repair to damaged section

East Culvert Penpol Road, Hayle

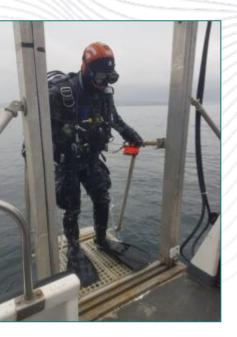
Andy Hoskin Highway Manager

enquiries@cornwallhighways.co.uk




Ocean Alkalinity Enhancement Update

May 2023 Baseline Survey Results and November Halifax Status


Peter Chargin

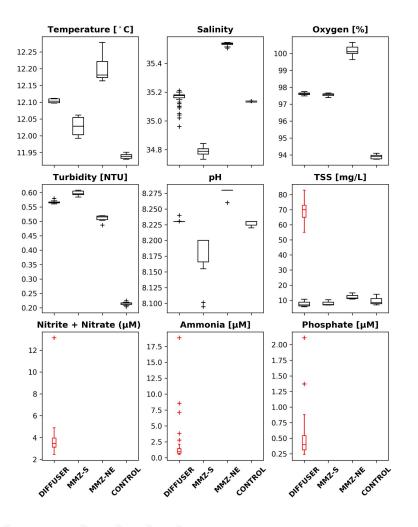
November 16th, 2023

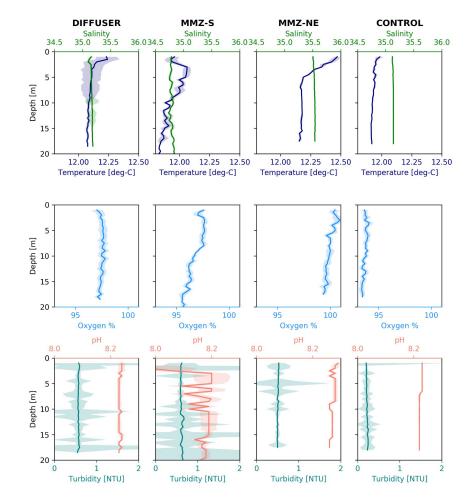
1,500 m

What we measured...

Water

- Water samples for elemental analysis (primarily trace metals);
- Profiles to measure temperature, conductivity, pH, salinity, dissolved oxygen and turbidity (water clarity).


Sediment


 Elemental analysis at each of the four locations

Biology

- Ecological Survey
- Phytoplankton and zooplankton
- Tissue analysis of invertebrates for elemental analysis (primarily trace metals)

Nutrient & Water Column Profiles

			Lab Result						Reference Standards & Data								
		Detection		Diff			MMZ-S		1	MMZ-NE		CTRL			UK EQS		EA Sampling:
Parameter	Unit	Limit	Α	В	С	Α	В	C	A	в	С	Α	В	С	AA	MAC	2002-04 Range
Aluminum	μg/L	0.7	2.42	1.81	4.33	2.34	1.47	1.54	1.03	0.718	1.25	1.12	1.65	1.71	<u> </u>		929
Arsenic	μg/L	0.05	1.9	1.82	1.67	1.81	1.7	1.64	1.49	1.64	1.77	2.02	2.27	1.49	25	<u> </u>	1.2 - 1.8
Boron	μg/L	10	4380	4490	4380	4390	4340	4320	4420	4340	4370	4380	4370	4320	7000		3778
Cadmium	μg/L	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	- 	-	<0.25
Calcium	mg/L	0.1	381	406	387	376	387	379	383	364	373	379	382	378	-	-	
Chromium	μg/L	0.1	0.196	0.155	0.158	<0.1	0.167	0.179	0.224	0.259	0.156	0.296	0.146	0.172	0.6	32	<0.5 - 5.1
Cobalt	μg/L	5	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	3	-	1
Copper	μg/L	0.5	0.613	<0.5	0.513	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.565	<0.5	<0.5	3.76	-	<0.5 - 1.1
Iron	mg/L	0.004	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	0.011	<0.004	<0.004	1	-	1
Lead	μg/L	0.3	<0.3	<0.3	0.389	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.326	<0.3	0.341	1.3	_	<2.5 - 2.5
Magnesium	mg/L	0.09	1260	1350	1290	1250	1280	1260	1260	1210	1250	1270	1270	1260			
Manganese	μg/L	0.1	0.744	0.537	0.334	0.807	1.04	0.557	0.667	0.795	0.497	0.671	0.776	0.744	5	-	1 8 7 8 *
Mercury	μg/L	0.002	0.082	0.0694	0.0792	0.0532	0.0599	0.0617	0.066	0.0748	0.0684	0.072	0.0694	0.071	-	0.07	<0.01 - 0.01
Nickel	μg/L	0.5	<0.5	0.638	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.6	34	<3
Silver	μg/L	0.05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	0.5	1	-
Tin	μg/L	0.05	4.75	1.9	4.06	1.12	0.624	1.82	<0.5	<0.5	<0.5	3.54	6.26	14	10	-	8 4 9
Vanadium	μg/L	0.005	1.69	1.67	1.58	1.7	1.59	1.51	1.65	1.63	1.71	1.69	1.74	1.62	100		222
Zinc	μg/L	2	2.9	2.6	3.13	2.2	<2	2.92	3.38	<2	<2	2.5	2.32	<2	7.9		<4 - 7
Above Threshold																	
Detected values																	

Elemental Analysis (trace metals)

Sediment example

Seawater example

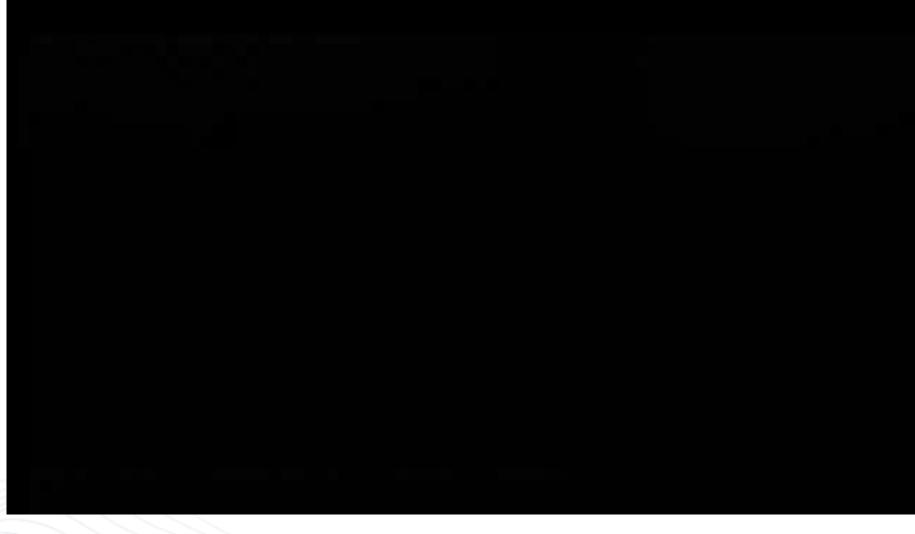
Biology: Benthic Ecological Survey

A 🖌	В	С	D	E	F	G	н
1 SPECIES ID	SCIENTIFIC NAME	KINGDOM 💌	PHYLUM 💌	CLASS 🗸	ORDER	FAMILY	GENUS 🔻
2 STI.1	Actinothoe sphyrodeta	Animalia	Cnidaria	Anthozoa	Actiniaria	Sagartiidae	Actinothoe
3 STI.2	Alcyonidium diaphanum	Animalia	Bryozoa	Gymnolaemata	Ctenostomatida	Alcyonidiidae	Alcyonidium
4 STI.3	Alcyonium digitatum	Animalia	Cnidaria	Anthozoa	Malacalcyonacea	Alcyoniidae	Alcyonium
5 STI.4	Antedon bifida	Animalia	Echinodermata	Crinoidea	Comatulida	Antedonidae	Antedon
6 STI.5	Aplidium elegans	Animalia	Chordata	Ascidiacea	Aplousobranchia	Polyclinidae	Aplidium
7 STI.6	Aplidium punctum	Animalia	Chordata	Ascidiacea	Aplousobranchia	Polyclinidae	Aplidium
8 STI.7	Ascidia mentula	Animalia	Chordata	Ascidiacea	Phlebobranchia	Ascidiidae	Ascidia
9 STI.8	Ascidiella aspersa	Animalia	Chordata	Ascidiacea	Phlebobranchia	Ascidiidae	Ascidiella
10 STI.9	Aslia lefevrei	Animalia	Echinodermata	Holothuroidea	Dendrochirotida	Cucumariidae	Aslia
11 STI.10	Asterias rubens	Animalia	Echinodermata	Asteroidea	Forcipulatida	Asteriidae	Asterias

35 STI.134	Sycon ciliatum	Animalia	Porifera	Calcarea	Leucosolenida	Syconidae	Sycon
36 STI.135	Symphodus melops	Animalia	Chordata	Teleostei	Eupercaria incertae sedis	Labridae	Symphodus
37 STI.136	Synoicum incrustatum	Animalia	Chordata	Ascidiacea	Aplousobranchia	Polyclinidae	Synoicum
38 STI.137	Taurulus bubalis	Animalia	Chordata	Teleostei	Perciformes	Cottidae	Taurulus
39 STI.138	Tethya citrina	Animalia	Porifera	Demospongiae	Tethyida	Tethyidae	Tethya
40 STI.139	Thorogobius ephippiatus	Animalia	Chordata	Teleostei	Gobiiformes	Gobiidae	Thorogobius
41 STI.140	Thyone	Animalia	Echinodermata	Holothuroidea	Dendrochirotida	Phyllophoridae	Thyone
42 STI.141	Tricolia pullus	Animalia	Mollusca	Gastropoda	Trochida	Phasianellidae	Tricolia
3 STI.142	Trivia arctica	Animalia	Mollusca	Gastropoda	Littorinimorpha	Triviidae	Trivia
44 STI.143	Trivia monacha	Animalia	Mollusca	Gastropoda	Littorinimorpha	Triviidae	Trivia
45 STI.144	Tubularia indivisa	Animalia	Cnidaria	Hydrozoa	Anthoathecata	Tubulariidae	Tubularia
46 STI.145	Ulva lactuca	Plantae	Chlorophyta	Ulvophyceae	Ulvales	Ulvaceae	Ulva
47 STI.146	Urticina felina	Animalia	Cnidaria	Anthozoa	Actiniaria	Actiniidae	Urticina
48							

Benthic Species

 Analysis of video taken during dive survey resulted in the identification of 146 species between 3 survey sites.

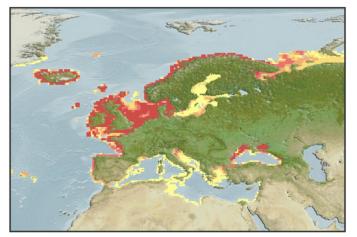

Biology: Tissue Testing

Sub-Matrix: BIOTA	Client sample ID Laboratory sample ID		Fau L	_			
	Client sampling date / time	<u></u>		2023-05-07			
Parameter	Result	MU	Unit	LOR	Package	Method	Issuer
Sample Preparation							
Digestion	Yes	1	-	-	F-15HF-sol2	B-PF51HF-MW	LE
Total Metals/Major Cations				1			
Aluminum	7.94	± 1.42	mg/kg	2.00	F-15HF-sol2	B-SFMS-51	LE
Arsenic	19.9	± 2.5	mg/kg	0.0200	F-15HF-sol2	B-SFMS-51	LE
Boron	<2		mg/kg	2.00	F-15HF-sol2	B-SFMS-51	LE
Cadmium	<0.005		mg/kg	0.00500	F-15HF-sol2	B-SFMS-51	LE
Calcium	777	± 105	mg/kg	30.0	F-15HF-sol2	B-SFMS-51	LE
Chromium	3.96	± 1.03	mg/kg	0.0500	F-15HF-sol2	B-SFMS-51	LE
Cobalt	0.119	± 0.017	mg/kg	0.0200	F-15HF-sol2	B-SFMS-51	LE
Copper	8.03	± 1.12	mg/kg	0.200	F-15HF-sol2	B-SFMS-51	LE
Iron	20.4	± 3.0	mg/kg	2.00	F-15HF-sol2	B-SFMS-51	LE
Lead	<0.03		mg/kg	0.0300	F-15HF-sol2	B-SFMS-51	LE
Magnesium	743	± 102	mg/kg	20.0	F-15HF-sol2	B-SFMS-51	LE
Manganese	0.451	± 0.062	mg/kg	0.200	F-15HF-sol2	B-SFMS-51	LE
Mercury	0.0365	± 0.0046	mg/kg	0.0200	F-15HF-sol2	B-SFMS-51	LE
Nickel	2.08	± 0.41	mg/kg	0.0500	F-15HF-sol2	B-SFMS-51	LE
Silver	0.150	± 0.026	mg/kg	0.00300	F-15HF-sol2	B-SFMS-51	LE
Tin	<0.05		mg/kg	0.0500	F-15HF-sol2	B-SFMS-51	LE
Vanadium	0.0462	± 0.0063	mg/kg	0.0200	F-15HF-sol2	B-SFMS-51	LE
Zinc	60.7	± 8.3	mg/kg	0.500	F-15HF-sol2	B-SFMS-51	LE

DIVE SURVEY

Biology: Toxicology Testing

- Perform certified lab-based testing of small native fish
- Conduct LC50 testing of stickleback (Gasterosteus aculeatus) with Planetary's MH
- Test at multiple concentrations: .63 g/l, 1.25 g/l, 2.5 g/l, 5 g/l, 10g/l
- Concentration proposed for Hayle trial: <1g/l


Native Range Map for Gasterosteus aculeatus

Distribution: Circumarctic and temperate regions: Extending south to the Black Sea, southern Italy, Iberian Peninsula, North Africa; in Eastern Asia north of Japan (35â"¬â-`N), in North America north of 30-32â"¬â-`N; Greenland.

Map: Europe

✓ Standard size ✓ Landmask On ✓ Refresh...

Choose a 'World' base map for globe or polar views, or for seamless pan/zoom

Relative probabilities of occurrence	Download data (as csv)	About AquaMaps	-Close Native Range Map- Session no. 7
0.80 - 1.00			
0.60 - 0.79			
0.40 - 0.59			
0.20 - 0.39			
0.01 - 0.19			

Biology: Toxicology Testing Results

Planetary's magnesium hydroxide is non-toxic to stickleback at 10 g/l

• Concentration proposed for Hayle trial: <1g/l

GENERAL REPORT AQUATIC TOXICITY TESTING OF BRUCITE

Submitted By:

Observation Period	LC50 (g/L)	95% confidence limits (g/L)
96 hours	>10.0	N/A

Table 1 – Brucite Toxicity Results (September 2023).

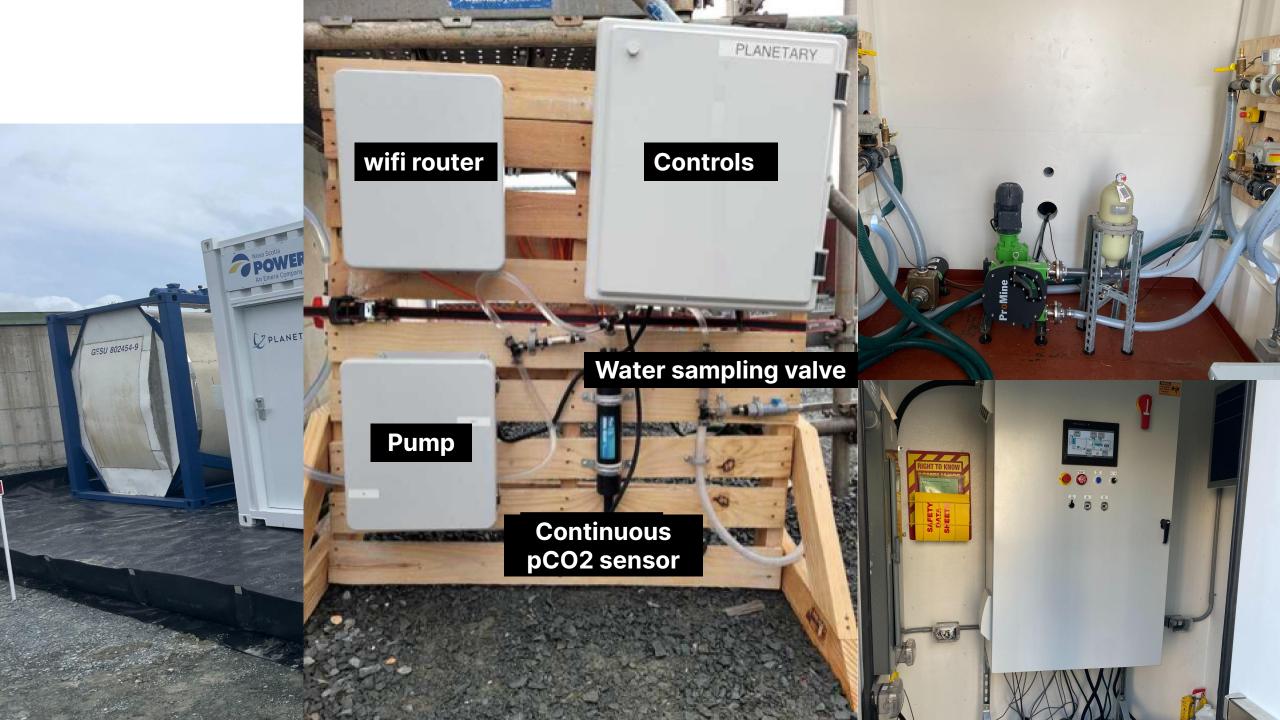
Based on the results of the above testing, the acutely toxic concentration of the chemical Brucite to Threespine stickleback falls above 10 g/L (or 10,000 mg/L).

Update on Halifax Project

Dalhousie University

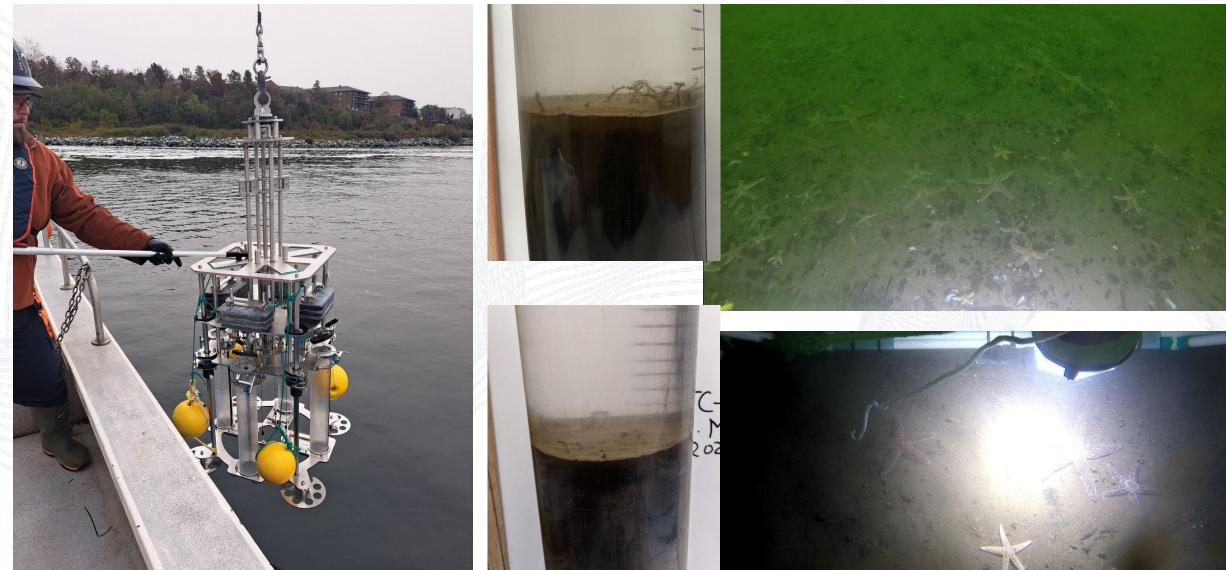
CO₂

monitoring


の目的

CO2-> HCO

ANTACIO


Site Automation and Monitoring System

Sediment Monitoring

In addition to water monitoring

Results

Too early for most scientific results to be determined

- Trial to be completed by November 30
- Weekly additions for up to 12 hours per day so far
- All limits respected (tests conducted and verified by local lab and enforcement agency)
- Maximum rate of addition: approximately 11k tonnes per year gross removals
- Target for net removal this year: approximately 100 tonnes
- No issues identified so far

Thank you!